

Clojure and Modularity

Philly Lambda
Tuesday, July 21, 2009

Stuart Sierra
http://stuartsierra.com/

www.altlaw.org

Clojure's Four Elements

List (print :hello "Philly")

Vector [:eat "Pie" 3.14159]

Map {:lisp 1 "The Rest" 0}

Set #{2 1 3 5 "Eureka"}

defn
(defn greet [name]
 (println "Hello," name))

(defn average [& args]
 (/ (reduce + args) (count args)))

Data are Functions
({:f "foo" :b "bar"} :f)
"foo"

(:key {:key "value", :x "y"})
"value"

([:a :b :c] 2)
:c

(#{1 5 3} 3)
true

defmacro

(defmacro when [test & body]
 (list 'if test (cons 'do body)))

Java
(import '(com.example.package
 MyClass YourClass))

(.method object argument)

(MyClass/staticMethod argument)

(MyClass. argument)

coordinated

independent

unshared

synchronous asynchronous

ref

agentatom

var

Vars
(def life 42)

(defn meaning [] (println life))

(meaning)
42

(binding [life 37]
 (meaning))
37

(let [life 37]
 (println life)
 (meaning))
37
42

Refs
(def c (ref 100))

(deref c)
100

(dosync (alter c inc))

(deref c)
101

Agents
(def fib (agent [1 1 2]))

(deref fib)
[1 1 2]

(send fib conj 3 5) returns immediately!

 later on...
(deref fib)
[1 1 2 3 5]

clojure.contrib.http.agent

(http-agent

 "http://www.altlaw.org/"

 :on-success

 (fn [a]

 (println

 (response-body-str a))))

Multimethods

(defmulti copy

 (fn [in out]

 [(class in) (class out)]))

Multimethods

(defmethod copy [InputStream OutputStream] ..

(defmethod copy [InputStream Writer] ...

(defmethod copy [InputStream File] ...

(defmethod copy [Reader OutputStream] ...

(defmethod copy [Reader Writer] ...

(defmethod copy [Reader File] ...

(defmethod copy [File OutputStream] ...

(defmethod copy [File Writer] ...

(defmethod copy [File File] ...

Namespaces

(ns my.cool.project

 (:require [clojure.contrib.math :as math])

 (:import (java.math BigDecimal)))

(defn lower-median [x y]

 (math/floor (/ x y))

Modularity and
Dependency Management

● CPAN
● Python Eggs
● Rubygems
● PEAR (PHP)

● OSGi
● Maven
● Ivy

Modularity

Your program

Library X Library Y

Library Z,
version 1

Library Z,
version 2

"JAR hell"

Your program

Library X Library Y

Library Z,
version 1

Library Z,
version 2

x.jar y.jar

CPAN

● System-wide or per-user library installation
● User manages libraries
● One repository, many mirrors
● Multiple versions of a lib may be installed;

each process may only use one version
● Integrated docs, tests, & bug tracker

Rubygems

● System-wide or per-user library installation
● User manages libraries
● Multiple repositories, names may conflict
● Multiple versions of a lib may be installed;

each process may only use one version
● Docs, tests, and bug tracking not integrated

ASDF

● System-wide or per-user library installation
● User manages libraries
● Wiki page acts as the repository!
● No integrated docs/tests/bug-tracking
● Does not support multiple versions of the

same lib

Maven / Ivy

● Per-project library installation
● Build system manages libraries;

user manages private repository
● Multiple public repositories
● Optional integration with docs/tests
● Permits multiple versions of a same lib,

must be handled by a framework

OSGi

● Java EE, Glassfish, Eclipse
● Bundle: JAR file + extra manifest headers
● Each Bundle gets its own ClassLoader
● Multiple, nested ClassLoader contexts

within a single JVM

More

● http://clojure.org/
● Google Groups: Clojure
● #clojure on irc.freenode.net
● http://github.com/richhickey/clojure-contrib
● http://stuartsierra.com/
● http://github.com/stuartsierra
● http://www.altlaw.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

